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ABSTRACT 

Modeling the propagation of malware can help us to understand this phenomenon, and to provide defense 

strategies for the system. We discuss the use of Cell-DEVS, a formal modeling approach to model 

malware propagation in different types of networks. We present different models to investigate the 

propagation of malware in different networks. We first study malware propagation in wireless sensor 

networks, and we introduce wireless channel access rules. Then, we study malware spread in wired 

networks. In this model, we introduce an attacker who can generate and update a worm dynamically, and 

a defender who can develop anti-malware into the network. Finally, we discuss the advantages of the use 

of formal modeling technique to model different kinds of malware propagation in networks.     
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1 INTRODUCTION 

Networks and Internet brought many opportunities and challenges to users, enterprises and researchers. In 

particular, malware and their variants have been a persistent security threat in the networks and the 

internet. Malware causes large part of the internet temporarily inaccessible, financial loss and social 

disruptions. For instance, the Kaspersky security bulletin 2015 (KASPERSKY, 2015) mentioned that in 

2015 one or more malware attacks blocked 58% of corporate computers. In 2001, the Code Red worm 

infected at least 359000 hosts in 24 hours and costs an estimated $2.6 billion in damage (Wang, Sheng, 

Yang, & Wanlei, 2014). According to the Symantec internet security thread report (Symantec, 2016), 

more than 430 million new unique pieces of malware were in 2015, which is 36% more than the year 

before. Therefore, industry and researchers have focused on modeling their propagation for investigating 

the optimized countermeasures.  

In recent years, a variety of models and algorithms has been proposed for modeling the malware 

propagation mechanism. In order to control malware from propagating and to mitigate the impact of an 

epidemic, we need to have detailed understanding of malware spreading. In this study, we present two 

models available to study the dynamics of malware propagation using the Cell-DEVS formalism. One of 

them is a model for wireless sensor networks (WSNs) with medium access control (MAC) rules to 

observe the dynamics of malware propagation and energy efficiency. Another model is for malware 

propagation in wired computer networks, which is an extended Susceptible, Infected and Recovered (SIR) 

model (Rey & Martín, 2013). Moreover, we added attacker and defenders into the network. Attackers 

generate and update the malware in the network and spread them. The defender can generates anti-

malware and annihilate the malware into the network. 

The Cell-DEVS formalism is an extension of Discrete Event System (DEVS) specifications (Zeigler, 

Praehofer, & Kim, 2000) to define cellular models with explicit timing delay. Cell-DEVS improves the 

execution performance and provides simplicity and reusability of cellular models by using a discrete-
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event approach (Wainer G. A., 2009).  Furthermore, the use of formal modeling techniques enables 

automated model verification (Inostrosa-Psijas, Wainer, Gil-Costa, & Marin, 2014). For simulating the 

models, we use CD++ and distributed CD++ with RESTful Interoperability Simulation Environment 

(RISE) middleware (Al-Zoubi & Wainer, 2015). The CD++ toolkit is an open source platform for 

modeling and simulation that implements DEVS and the Cell-DEVS formalism.  

The rest of the paper is organized as follows. In section 2, we discuss background and related work. In 

section 3, we present a model for malware propagation in wireless sensor networks. In this section, we 

simulate the model using CD++ toolkit and simulation results also presented. In section 4, we present 

another model to study the dynamics of malware spreading in computer networks. For simulating the 

model, we use distributed CD++ (DCD++) with the RISE middleware. The DCD++ environment 

(Wainer, Madhoun, & Al-Zoubi, 2008) is an extension of CD++ that enables distributed simulation of 

DEVS and Cell-DEVS models, and it has been integrated under the RISE middleware. 

2 BACKGROUND  

Communication networks are one of the most important inventions of humans, which makes it possible 

that people from all over the world can communicate with each other instantly. However, this 

environment also brings some security issues for users and their computers; malicious software (malware) 

is one of them. A malware is a program that self-propagates through the network exploiting its security 

flaws. It infects the host devices and uses the infected device to spread automatically or through human 

activities. Due to the complexity of the model under study, we use the Cell-DEVS formalism and the 

CD++ toolkit to model malware in computer networks and wireless sensor networks.  

The Cell-DEVS is an extension of DEVS formalism (Zeigler, Praehofer, & Kim, 2000) that allows 

cellular modeling with explicit timing delay. A Cell-DEVS model is represented as a lattice of cells where 

each cell is a DEVS atomic model and cell space is a couple model. An atomic model represents a part of 

the system that describes the behavior of the system. A couple model is composed of several atomic 

models or coupled sub models. Each cell is connected to the local neighboring cells through ports. Figure 

1 shows the basic idea of Cell-DEVS model.  

 

Figure 1: Cell-DEVS components. 

 

A Cell-DEVS atomic model is defined formally as (Wainer G. A., 2009):  

TDC = <X, Y, N, delay, d, 𝛿𝑖𝑛𝑡, 𝛿𝑒𝑥𝑖𝑡, τ, λ, D> 

Where X is the set of external input events and Y is the set of external output events. N is a set of inputs, 

delay is the transport or inertial delay and d is the transport delay for the cell. 𝛿𝑖𝑛𝑡 is the internal transition 



Kazi and Wainer 

function and 𝛿𝑒𝑥𝑖𝑡 is the external transition function. τ is the local computing function, λ is the output 

function, and D is the lifetime function of the state.  

A Cell-DEVS coupled model is formally defined as:  

GCC = <Xlist, Ylist, X, Y, n, {t1…tn}, N, C, B, Z> 

Where Xlist is the input coupling list and Ylist is the output coupling list. X and Y is the set of external 

input and output events respectively. n is the dimension of the cell space and {t1…tn} is the number of 

cells in each of the dimensions. N is the neighborhood set, C is the cell space, B is the border cells set and 

Z is the translation function.  

CD++ and distributed CD++ (Wainer G. A., 2009) are open source toolkits that provide a development 

environment for implementing DEVS and Cell-DEVS theory. DEVS atomic models can be developed 

using state based approach programed in C++. Coupled models and Cell-DEVS models are defined using 

a built-in specification language based on the formal specifications of Cell-DEVS. The model 

specification includes the definition of the size and dimension of the lattice, borders and neighborhood. 

The local computing function of a cell is defined using a set of rules. The form of a rule is: 

POSTCONDITION ASSIGNMENTS DELAY {PRECONDITION} (Wainer G. A., 2009). The state of 

the cell will change to the designated POSTCONDITION when the PRECONDITION is satisfied. The 

values will be transmitted to other components through the ports after the DELAY. If the precondition is 

false, the next rule in the list is evaluated until a rule is satisfied or there are no more rules. The 

ASSIGNMENTS section can be used to modify the state variables of the model. The CD++ toolkit 

interprets this specification language and executes a simulation of the model. 

In (Rey & Martín, 2013) authors proposed a model for malware propagation named SIR e-Epidemic 

based on cellular automata. This is a three states model: Susceptible, Infected and recovered. In (Karyotis 

& Symeon, 2014) the authors study the modeling of malware propagation for wireless distributed 

networks. They focus on the users that can dynamically join and leave the network because of the effects 

of malware. The authors in (Peng, Guojun, & Yu., 2013) present a model for worm propagation in smart 

phone using two-dimensional cellular automata based on epidemic theory. In (Ye, John, & Deborah, 

2004), the authors propose a medium access control protocol for wireless sensor networks named S-

MAC. S-MAC introduces techniques to reduce energy consumptions and support self-organization. The 

authors in (Yadav, Shirshu, & Malaviya, 2008) proposed an optimized medium access protocol focusing 

on energy efficiency for WSNs. In (Qela, Gabriel, & Hussein, 2009) authors introduce a model to study 

of large-scale wireless sensor networks using Cell-DEVS. 

In this study, we have used the advantages of Cell-DEVS as we mentioned earlier to develop two 

advanced models for malware propagation in wireless sensor networks and computer networks. We 

proposed an advanced model to study the malware propagation in WSN by introducing the medium 

access control (MAC) rules. The details of the model are discussed in section 3. In addition, we also study 

the malware spreads in computer networks by extending the SIR model as stated before. In our model, we 

introduce five different states with anti-malware to make it closer to reality.     
 

3 MODELING MALWARE PROPAGATION IN WIRELESS SENSOR NETWORKS 

Wireless Sensor Networks (WSNs) are collections of nodes that can sense a variety of physical 

phenomena, partially process the raw data and communicate each other wirelessly (Stankovic, 2008). One 

of the main features of WSNs is its ability to collect information from the real world and communicating 

that information to more powerful devices that can process it and use accordingly. In recent years, WSNs 

have received tremendous attention in the research and industry that has potential applications in health 

care, transportation, energy management, industrial process monitoring, home automation, environmental 

monitoring, etc.  
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As the applications of WSNs increase gradually, sensor nodes become more vulnerable to security attacks 

like malware because of its broadcast nature, resource scarcity and unattended environment. A number of 

actions of a node such as computation activity in the MCU (Microcontroller Unit), data transmission, data 

reception consume the energy of a node. Among these, the most energy consuming activity is data 

transmission (Van Dam & Koen, 2003). Therefore, when the WSNs spread malware from one node to 

another node repeatedly, the energy of the nodes is exhausted and more and more nodes become dead.  

In this section, we present a model of malware propagation in WSNs using Cell-DEVS. In (Song & Jiang, 

2008), the authors analyzed the process of malware propagation in WSNs using cellular automata and our 

model is based on this work. We extend the work by introducing the medium access control (MAC) rules 

(Ye, John, & Deborah, 2004; Yadav, Shirshu, & Malaviya, 2008). The sensors are randomly deployed on 

a rectangular two-dimensional lattice composed of M×N cells. The entire coverage area of the network is 

considered as cell space and the coverage area of a particular node is considered as a cell. Each cell may 

or may not be occupied by sensor node. Each node is considered into one of the following four states 

(Song & Jiang, 2008): 

 Susceptible (S): The nodes in this state have not been infected by malware yet but are vulnerable 

to become infected.  

 Infected (I): In this state nodes have been infected by malware and may spread the malware to its 

neighbors.  

 Recovered (R): The nodes in this state used to be infected by malware and recovered. 

 Dead (D): In this state sensors have drained out of power that decreased during wireless 

communication. 

Energy consumption of a node depends on a number of actions and states of the node. Initially all the 

nodes in the lattice are considered susceptible, with fixed power. In this state, the node consumes energy 

at the lowest rate. A node consumes energy at the highest rate in the infected state because it broadcasts 

the malware to other nodes. We considered the basic characteristics of the media access protocol to 

guarantee channel access fairness and minimize collision. The use of the MAC protocol also improves the 

battery power use in WSNs. So, broadcasting also depends on the availability of the channel. A node 

completely drained out of power is moved to the dead state. Cells in the grid without any sensor node are 

considered dead. Figure 2 shows the transition of states of a node based on the different probabilities. In 

the transition diagram P1, P2 and P3 the probabilities to move into infected, recovered and dead state of a 

sensor node respectively. The details of the probability parameters will be discussed in later.  

 

Figure 2: State transition of sensor nodes. 

We built a Cell-DEVS model consisting of a 3D lattice (10*10*3 cells). We considered three planes: the 

first plane describes the different sensor nodes deployed and their transitions. The second plane represents 

the power status of the corresponding nodes in the first plane throughout the simulation. Finally, the third 
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plane shows the media access of the nodes. In this model, there are nine neighboring cells with the origin 

cell. The states of a node discussed earlier are denoted in Cell-DEVS as below:   

 -1: The node or the cell is in dead or unoccupied within the coverage are of the network or within 

the cell space.  

 0: The node is in susceptible state within the coverage are of the network.  

 1: The node is in infected state. 

 2: The node is in recovered state. 

The state of access plane is denoted by 30, 31 and 32. Where 30 represents the channel is free, 31 

represents receiving the data and 32 represents it broadcasting data. Due to access rules, the node has to 

be waiting for channel to be free and to start broadcasting. 

Each plane uses its own rules. Infected nodes in the sensor network try to diffuse the malware at each 

time step to their neighbors. All the nodes in the susceptible state become infected with probability P1. 

From the infected state, a node can goes to recovered state by running a patch with a probability P2. 

Sensor nodes transit to dead state with a rate of P3 based on the restrained power of the sensors and the 

consumptions during communications among the nodes.  

We use CD++ to simulate the model. To observe the malware propagation, three types of information 

(state transition, availability of channel and energy reduction) play a role in our model. The following are 

some sample rules we used.  

rule : 32 {round(uniform(1,10))*100} { (0,0,-2)=1 and statecount(32) <1}  

The above rule is for accessing the medium of a malware. If the node is infected that is the state value of 

the malware is 1 and the medium is free, start broadcasting.  

rule : {(0,0,0)*1.0} 1000 {(0,0,-1)=0 or (0,0,-1)=2 }  

The above rule shows the power consumption rate of susceptible and recovered nodes. 

rule : 1 1000 { ((0,0,0)=0 and (0,0,2)=31)}  

If the susceptible node received malware message it moves to the infected state that is state value change 

to 1. 

We will discuss a few examples on the execution of this model showing how the malware propagates 

within the network and it affects the energy consumption of a sensor node. In our first scenario, we 

executed malware propagation for a 10×10×3 network. Initially all the sensors are considered with full 

power and the channels are considered free. We assume that one sensor is infected with malware and 

others are in the susceptible state. Figure 3 shows the initial state (time 0) of the network with three 

planes. It can be seen that in the malware plane, all the nodes are in susceptible state (value 0) except the 

node (0, 0, 0). We have initialized this node as in infected state (value 1), to observe the malware 

propagation behavior. We have set the initial battery power level of every node to its maximum value, i.e. 

20. The access plane is initialized to show that the wireless media is free (state value 30) 
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Figure 3: Initial values (00:00:00:000). 

 

According to the rules, the infected node will start broadcasting after a random countdown. The output 

depicted in Figure 4 is observed in simulation time 600 and it can be noticed that node (0, 0, 0) started 

broadcasting from the value 32 appeared in access plane, which represent malware broadcast. In the next 

time step, node (0, 0, 0) has moved to the recovered state while its battery power has been reduced to 18 

as shown in the Figure 4. In the meantime, three neighbors of the infected cell have received the malware 

message and changed to the infection spreading state as shown in figure 5. In the next time step, three 

infected neighboring nodes of (0, 0, 0) will broadcast, following media access rules, which are defined to 

minimize collisions by not allowing neighbors broadcast simultaneously.  

 

Figure 4: Start broadcasting. 

 

Figure 5: Malware propagated to neighbors. 

An intermediary state taken at simulation time 00:02:08:000 is shown in Figure 6. In this figure, we can 

see the behavior of self-propagating malware.  
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Figure 6: Intermediary output of the simulation (00:02:08:000). 

From the access plane, we can see the broadcast of message initiation and broadcast receiving. From the 

power plane, we can see that malware-infected nodes consume more battery power for broadcasting and 

hence resulting dead nodes due to faster battery drain-out as shown in black cells. The malware plane also 

shows the propagation of malware and the dead cell. The dead cells as represented in white. This 

simulation process continue until the end of experimental time interval or all sensor nodes move to dead 

state due to complete battery drain-out. 

4 MODELING MALWARE IN COMPUTER NETWORKS 

In (Rey & Martín, 2013), the authors developed and proposed a model on malware spreading named SIR 

(susceptible, infected and recovered).  We proposed an extended version of this model. In our model, we 

have five states and three different types of cell or computers: Civilian, Attacker and Defender. The 

attacker generates and updates the malware in the network at random time interval. The defender can 

generate anti-malware and wipe out the malware in the network. The civilian is an average computer that 

can be infected by malware and get immune by anti-malware. Moreover, each computer is considered 

into one of the following five states: 

 Susceptible (S): Computers have not been infected yet but are potential to be infected in the 

network.  

 Infected (I): Computers have been infected by malware in the network. 

 Immune (Im): Computes in the network have been loaded with anti-malware.  

 Isolated (Is): Computers have been isolated itself from the network. 

 Eliminated (E):  Malware wiped out from the computers and loaded with anti-malware.  

  

 

Figure 7: State transition diagram of a computer. 
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We built a Cell-DEVS model consisting of a 2D lattice (30*30 cells). To distinguish different types of 

cells as we discussed before a state variable “$identity” is used. $identity= {0,100,150, 200} where, an 

average cell has an identity value of 0 and moved to the isolate state from the network by changing its 

identity value to 150. The identity value 100 is for attacker and 200 for defender. The sates of a cell 

discussed earlier are denoted in Cell-DEVS as below:  

 0 or 1: The computer or cell is in the susceptible state within the network or within the cell space.  

  -1: The cell is in infected state within the network or within the cell space.  

  2: The cell is in immune state within the network. 

  3:  The cell is in isolated state within the network. 

  9: The cell is in eliminated state within the network or within the cell space. 

The attacker generates and updates malware in random intervals. The aim of attacker is to spread the 

generated malware to other computers who have not antivirus software or just have an obsolete version of 

antivirus software that cannot check the malwares out and kill them. The following are some sample rules 

we used. Some sample rules for generating and updating malwares are shown as below:   

 rule : { ~virusvers := $virusvers ; } { $timer := $timer + uniform(4, 6) ; } 100  

   { $identity = 100 and $timer < 60 }  

 rule : { ~virusvers := $virusvers ;} { $timer := 0 ; $virusvers := $virusvers   

   + 2 ;} 100 { $identity = 100 and $timer > 60 } 

The above rules are for generating and updating versions of malware into the network. As we can see, the 

attacker’s identity is marked as 100 and it updates the malware among every 1000ms to 1500ms. Every 

update will make the version number increase 2 to a new value. This process of malware spread can be 

divided to two stages. In the first stage, an unprotected cell is infected by the malware. Then its state 

changes from unprotected to infected state. In the second stage, a new version of malware with higher 

value of “$virusvers” will replace the current version of malware in the cell. The state of cell is still 

infected, but the cell has been infected again by an advanced malware with higher version value.  

 rule : { ~virusvers := #Macro(virusspreading) ; ~state := -1 ; } { $virusvers :=  

   #Macro(virusspreading) ; } 100 { #Macro(virusspreading) > $virusvers and   

   #Macro(virusspreading) > $anvirusvers and $identity = 0 and      

   random < ( #Macro(vPossibility_Of_Spreading)) } 

The above rule is for the spread of malware into the network. In this rule of spread, we take a factor of 

possibility into account. Cells are not infected unconditionally. Instead, it has a possibility to be infected. 

Here we use two macros “virusspreading” to find out the highest version number among the 8 neighbors 

of the cell and “vPossibility_Of_Spreading” to define the probability of malware spreading. 

In this model and simulation of a network, we also put several defenders in the cells. Defenders monitor 

their neighbors; produce anti-malware software against the current version of the malware. To implement 

the function of producing and updating anti-malware software we use ports and state variables. First, a 

defender should output the current version number of anti-malware to its neighbor. That is required in the 

spread of anti-malware software. Thus, a new port called “~anvirusvers” is introduced to implement this 

feature. Also, a state variable “$anvirusvers” is used to record the current version number of anti-malware 

software. The state variable “$identity” is used again to indicate the defender cells. The following rule is 

used to produce and updating new version of antimalware software into the network.   
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 rule : {~anvirusvers := #Macro(virusspreading)+1; ~virusvers := 0 ; ~state := 2; } 

   { $virusvers := 0 ; $anvirusvers := #Macro(virusspreading) + 1 ; } 100 

   { ( #Macro(virusspreading) > $anvirusvers or  

   #Macro(anvirusspreading) > $anvirusvers ) and $identity = 200 } 

In this rule, every time the defender encounters a new version of malware, it updates the anti-malware 

software. The new version number of anti-malware software is the version number of malware plus 1. 

This ensures that the anti-malware software can wipe out the malware. The rule for spreading of 

antimalware is as below.   

 rule:{~anvirusvers:=#Macro(anvirusspreading);~virusvers:=0;~state:=2;}  

       {$anvirusvers:=#Macro(anvirusspreading);$virusvers:=0;} 100 { #Macro  

    (anvirusspreading)> $anvirusvers and #Macro(anvirusspreading)>$virusvers  

    and $identity =0} 

The macro “anvirusspreading” is introduced in the above rule to find the newest version of anti-malware 

in a cell’s 8 neighbors. The anti-malware will get updated when the version number of anti-malware in 

the cell’s neighbors are higher than the cell’s current version number of anti-malware, or the cell is 

infected and the coming anti-malware has a higher version number than the malware, which means the 

anti-malware is able to defeat the malware. After being loaded the new version of anti-malware, the cell 

will output the current version number of its anti-malware as well as a value of 2 to indicate that it has 

been immune without any malware in it. 

We run a number of simulations in different parameter settings. We have simulated the model in 

distributed CD++ using RESTfull Interoperability Simulation Environment (RISE) middleware (Al-Zoubi 

& Wainer, 2015).  In this scene, the attacker in the network updates his malware frequently. This makes 

defender in the network has to update his anti-malware frequently and has little chance to wipe out the 

attacker finally.  

In this scenario, the attacker in the network updates his malware frequently. We can make the timer faster 

to satisfy this setting. The timer adds a larger number every 100ms and it makes the value of timer easier 

to exceed the threshold 60, which triggers an update of malware. Figure 8(a) shows the defender detects 

there is a malware in his neighbors, and produces an anti-malware to fight against the malware. After 

2100ms as shown in figure 8(b) from the beginning of simulation, the malware spreads fast and the anti-

malware can only secure a small part of computers in the upper-left corner of this scene. Figure 8(c) is the 

final scene of this simulation. The malware still controls most cells in the network. The defender has no 

chance to eliminate the attacker because of the frequent update of malware. This simulation demonstrates 

that a crazy attacker who frequently updates its malware may make the battle between attacker and 

defender last for a long time and even there is no victory for defender. 

 

Figure 8: Simulation results for crazy attacker. 
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In this scenario, the attacker in the network updates his malware infrequently. This makes defender and 

his anti-malware wipe out the attacker eventually before it updates its malware. We can make the timer 

slower to satisfy this setting. The timer adds a little number every 100ms. At the 1500ms as shown in 

figure 9(b) from the beginning of simulation, the anti-malware successfully wipes out the attacker before 

it updates a new version of malware. In figure 8(c), at the 3300ms from the beginning of simulation, the 

anti-malware successfully secures or protects all the cells in the network from malware. In this case the 

malware is eliminated completely. This simulation shows the fact that if attacker updates its malware 

infrequently, the defender may have chance to wipe out the attacker and eliminate malware at all in the 

network. 

 

Figure 9: Simulation results for lazy attackers. 

5 CONCLUSION AND FUTURE WORK 

We provide a brief discussion of the use of the Cell-DEVS formalisms for modeling and simulation of 

malware in networks. In this paper, two models are presented to study the dynamics of malware 

propagation. In the first model, we used cell-DEVS to study the malware propagation in wireless sensor 

networks. We introduce the channel access rules to see how it influences the spreads of malware as well 

as the power depletion of a sensor node. Some simulations are performed using CD++ toolkit.  We 

present simulation results graphically. In the second model, we study the malware propagation in wired 

network. In this model, we introduce attacker, who can dynamically generate and update malware to 

spread in the networks and defender who can produce anti-malware. Simulations are performed using 

distributed CD++ toolkit in RISE middleware. We also present simulation results graphically. These 

models showed how the Cell-DEVS formalisms could be used to model these kinds of problems in the 

networking area. We could reduce the complexity of the model by applying some level of simplification, 

and we implemented the models using CD++ and DCD++ toolkit. The modular and hierarchal nature of 

the Cell-DEVS formalism gives us the opportunity to reuse the model and improve it by adding new 

features easily according to the complexity of the system.  
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